美国宾夕法尼亚大学结合化学以及机械工程的教授团队,近期在奈米多尺度力学领域的研究有了重要的突破。10月中他们宣布完成了铁电域壁(domain walls,亦称畴壁)的多尺度模型(multi-scale modeling),并提出新的铁电域壁移动理论,他们发现藉由可滑移的壁,能够分隔铁电域壁的扇区,藉由这项技术将可实现高密度的铁电内存。
这个新理论经由研究团队的模式设计与实验数据支持成立,与既有的铁电域壁理论并不一致。值得注意的是,宾州大学的仿真实验重新制造出扇区的成长速度,并藉由渐变接口揭露出细微呈正方形的临界晶核(critical nuclei)。研究人员亦发现,当域壁移动时,磁偶极在平滑上下领域的过渡阶段,扮演重要关键的角色。藉由比例放大,研究人员设计出能让铁电材质内数以百万计的原子核全部对域壁反应的模型,从中扩展了微米级和毫秒速度的理论视野。
宾州大学makineni理论实验室的教授Andrew M. Rappe表示,研究团队从已这项成果中,知道域壁在铁电内存中移动的模式,藉由这项研究成果,研究人员将可以设计出更高速度且更高密度的铁电内存材质。
根据这项研究成果,材质写入和抹除的记忆速度,亦即域壁速率(domain-wall velocity),将会快到超乎想象。并且,材质的活化障壁(activation barrier),亦即写入与抹除记忆所需的能量,将会降低到以往无法设想的境界。这项技术突破将有助于未来计算机系统采用铁电材质作为主流内存的发展。
宾州大学的这项研究成果在过程中,获得美国海军研究办公室、陆军工兵团研究发展中心以及国家科学基金会的赞助,相关数值计算则获得美国国防部的支持。这项研究成果已经刊登在10月号的自然(Nature)纸本期刊以及网站上。