近年來,機器學習(ML)技術,尤其是機器學習的神經網路子集,幾乎已經迅速入侵了行動設備硬體和應用軟體的所有層面。許多常用且廣泛使用的手機應用程序都在後台運行ML技術,以針對特定用法和行為對設備進行微調。當手機的電源管理系統自動微調性能設置以延長電池壽命時,這就是機器學習的一個例子。
圖一 : 在所有機器學習案例中,最具挑戰性多媒體的強化功能。 |
|
當行動設備助理裝置追蹤正常的行車狀況,並發送有關火車或下班回家路上交通異常延誤的警示時,這也是機器學習的一種形式。而且,如果社交網路應用程序使用你朋友的名字來標記你所上傳的照片,那麼這也是正在運作中的機器學習的最好例證。
機器學習的重大挑戰
...
...
使用者別 |
新聞閱讀限制 |
文章閱讀限制 |
出版品優惠 |
一般訪客 |
10則/每30天 |
5/則/每30天 |
付費下載 |
VIP會員 |
無限制 |
20則/每30天 |
付費下載 |