帳號:
密碼:
最新動態
產業快訊
CTIMES / 文章 /
221e:從AI驅動感測器模組Muse獲得的啟發
 

【作者: 意法半導體】   2024年04月25日 星期四

瀏覽人次:【2486】

現今的問題已經不再是邊緣 AI 是否將會持續存在,而是如何才能在競爭激烈的領域中成功。因此,意法半導體(STMicroelectronics;ST)特別造訪邊緣機器學習技術之感測器模組的知名義大利公司221e,同時它亦是 ST合作伙伴計畫的成員,幫助大家了解其如何使用STM32 微控制器和 ST 感測器所打造出的三個平台:用於嚴峻環境的NeuraTrack,以及用於研究的Mitch和 Muse。



圖一 : 221e的Mitch平台
圖一 : 221e的Mitch平台

三個平台都提供了「感測器融合 AI」或「NeuraSense」技術,該技術將來自嵌入式加速度計、陀螺儀和磁力計的數據,傳送到能夠辨識活動或動作類型的神經網絡。NeuraSense 運行於221e 的動作處理引擎(Motion Processing Engine;MPE)上,可融合多個感測器IMU數據。作為ST 授權合作伙伴,221e最初設計其 MPE 目的是為了救生相關應用,其不容許任何錯誤發生。因此,它能夠提供高度準確的結果,為各種應用提供資訊。


為了協助大家了解,我們將重點介紹Muse。Muse平台採用STM32WB5MMG模組和 LSM6DSO32慣性感測器,用於追?主流和醫療環境中的活動。其PCB很小,僅22 mm x 22 mm,但功能強大,能夠以1,600Hz 的頻率採集慣性數據,並透過Bluetooth Low Energy 5.0 發送資訊。事實上,已有4家義大利醫院使用Muse系統。


在了解健康裝置必須滿足的嚴格需求後,讓我們一探221e如何利用ST的元件將 AI導入該平台,以及其團隊在此過程中習得的經驗。


221e之旅:從 ST 開發套件到優化應用

始於一個想法:更易於認證的模組。


Muse 是 221e 首款配備藍牙模組的裝置,因為Mitch和NeuraTrack使用的是BlueNRG處理器。該公司解釋,使用像STM32WB5MMG這樣的模組,意味著不需要擔心認證問題,因為它內建了天線和晶振,而本身亦已獲得認證,因此無論客戶身處世界何處,都能幫助他們更直接地獲得所需的射頻認證。


成果:利用硬體,專注於創新程式碼開發


圖二 : 221e的Muse平台
圖二 : 221e的Muse平台

221e也分享了如何經常使用,並仰賴ST的開發套件與工具,如 STEVAL-STWINKT1B(STWIN)、STEVAL-STLKT01V1(SensorTile)或 STM32WB5MM-DK(STM32WB5MMG 模組的首款開發套件)等。工程師從ST免費提供的原理圖中獲得靈感,並利用與專家交流經驗加速設計,這解釋了Muse如何在小尺寸封裝中整合如此強大的功能的原因。此外,這種方式還能讓 221e能夠專注於韌體開發。


221e 分享道:「我們喜歡從零開始進行軟體研發。透過 ST的硬體專業技術,我們可以專注於優化程式碼,以盡可能高效的方式發揮最大的效能。我們在談論的是電池供電系統上的微控制器和感測器。將 AI 導入資源受限的環境需要進行更深度的優化,而我們最有效的方式就是利用 ST 的硬體專業技術,這樣一來,我們就可以專注於發揮自己擅長的領域。」


從實際應用來看,這樣的方式讓221e 創造出一個非常靈活的平台。


【經驗學習1】專注於重要的事務

第一個啟發:確保數據品質,並追求數據量

221e選擇LSM6DSO32感測器,重要原因之一,在於它能夠在提供高採樣率的同時,仍然維持精確的測量。這款加速度計能夠提供±4 / ±8 / ±16 / ±32g的測量,而陀螺儀還能支援每秒±125 / ±250 / ±500 / ±1000 / ±2000度的角速率範圍,並在高性能模式下僅消耗0.55mA的電流。


簡而言之,這款感測器能夠在不犧牲Muse小型系統固有的功耗限制的情況下,為系統提供優質的數據。因此,221e解釋了如何能夠專注於獲取數據,而不必過度考量數據品質的問題。


221e將Muse系統放在不同位置,以獲取大量的動作數據,並依此建立超過30種不同類型的分類。在為期6個月之內,該221e共取得來自40多名受試者的數百萬筆數據,每種動作類型至少有65,000筆記錄。此外,他們可以使用同一套系統透過持續採集數據來改善其神經網路模型。由於Muse可以取得數據並運行神經網路演算法,因此,收集新數據和提供更新仍是一種具有成本效益的做法。


【經驗學習2】著眼未來;第一個進入市場並不等同於持續領先


圖三 : NeuraTrack
圖三 : NeuraTrack

221e 近期正在開發一款新平台,該平台將使用 ST 的新款ISM330IS ISPU感測器。這款感測器內建處理單元,在無需喚醒微控制器的前提下,就能提供更強大的運算能力。ST合作夥伴計畫成員表示,這種全新的ISPU功能不僅能夠帶來更高的節能效果,還為更加複雜的神經網路的運算法提供了可能性。


簡而言之,儘管221e目前在邊緣機器學習領域維持領先,但他們也意識到必須快速採用新技術來不斷創新才能維持領先地位。一個重要啟發是,在機器學習領域搶先一步,並不意味著就能永遠保持領先。


Muse背後的工程師團隊也在探索使用STM32WL及其LoRa功能的可能性,他們正研究在藍牙低功耗之外的新通訊模式。


事實上,使用sub-GHz頻段的網絡可以讓其與閘道器進行通訊,並且更快速地將數據發送到雲端,或者建立大型的網狀網路(Mesh Network)。因此,另一個重要啟發是,不僅要使用最新的感測器並更新神經網絡模型,還要建立更強大的通訊網路,才能夠使機器學習應用發揮更大的意義和價值。


相關文章
SiC MOSFET:意法半導體克服產業挑戰的顛覆性技術
意法半導體的邊緣AI永續發展策略:超越MEMS迎接真正挑戰
Crank Storyboard:跨越微控制器與微處理器的橋樑
嵌入式系統的創新:RTOS與MCU的協同運作
一美元的TinyML感測器開發板
comments powered by Disqus
相關討論
  相關新聞
» 史丹佛教育科技峰會聚焦AI時代的學習體驗
» 土耳其推出首台自製量子電腦 邁入量子運算國家行列
» COP29聚焦早期預警系統 數位科技成關鍵
» MIPS:RISC-V具備開放性與靈活性 滿足ADAS運算高度需求
» 應材於新加坡舉行節能運算高峰會 推廣先進封裝創新合作模式


刊登廣告 新聞信箱 讀者信箱 著作權聲明 隱私權聲明 本站介紹

Copyright ©1999-2024 遠播資訊股份有限公司版權所有 Powered by O3  v3.20.2048.18.225.255.196
地址:台北數位產業園區(digiBlock Taipei) 103台北市大同區承德路三段287-2號A棟204室
電話 (02)2585-5526 #0 轉接至總機 /  E-Mail: webmaster@ctimes.com.tw