隨著人工智慧(AI)應用迅速崛起,從生成式AI到自動駕駛和邊緣運算,對半導體晶片的需求也隨之激增。這些應用要求更高效能、更低功耗以及更高的設計靈活性。尤其在2030年實現單晶片容納1兆個電晶體的目標下,半導體產業面臨著重大挑戰:電晶體和晶片內互連的持續微縮、材料創新以突破傳統設計的限制,以及先進封裝技術的提升。
|
英特爾晶圓代工在未來節點的互連微縮上取得技術突破 |
為滿足未來AI的需求,晶片製造商必須在提升運算密度、降低延遲、優化散熱效率和降低能源消耗方面取得突破。同時,先進封裝技術的發展也將有助於實現更高的系統整合性,支持AI運算架構的彈性與多樣化。
英特爾晶圓代工需要新的半導體材料,以提升PowerVia晶片背部供電解決方案,緩解互連密度和持續微縮的壓力,這是延續摩爾定律並推動半導體進入AI時代的關鍵。在2024年IEEE國際電子元件會議(IEDM)上,Intel晶圓代工(Intel Foundry)展示許多技術方面的突破,為AI時代的半導體發展奠定了基石。這些技術涵蓋材料創新、電晶體微縮和異質整合解決方案,對產業具有深遠意義。
例如Intel展示減材釕(subtractive Ruthenium),這是一種替代銅的金屬化材料,專為解決未來節點的互連挑戰而設計。此技術可在間距小於25奈米時,降低線間電容達25%,並減少氣隙所需的設計限制。這不僅提高了晶片內部效能,還為持續微縮和提高能源效率提供了新途徑。
選擇性層遷移技術(Selective Layer Transfer, SLT)可用於實現超高速晶片對晶片組裝,吞吐量提升100倍。該技術允許更小的晶粒尺寸、更高的深寬比,以及彈性混合或熔接鍵合,極大地提升AI架構的設計靈活性與效能。
另外,6奈米矽RibbonFET CMOS電晶體,兼具短通道效應與高效能,為環繞式閘極(GAA)技術的微縮樹立了新標準。此外,其GAA 2D FET的研究也推進了二維材料在電晶體中的應用,為取代矽鋪平道路。
Intel還展示了基於300毫米氮化鎵(GaN)技術的新成果。這種材料具有高電壓承受能力和低訊號損耗特性,適用於射頻和功率電子應用,可進一步擴展晶片技術的可能性。
半導體業界持續開發關鍵的革命性創新,將有助於實現兆級電晶體時代的微縮需求。