相較於半導體、電子代工大廠,台灣相對屬於中小規模的傳產製造、機械設備業,由於早在工業4.0問世後,疫情推動數位轉型浪潮以來,便已習慣透過各種視/力覺感測系統蒐集累積製程中/後段產生的大數據,用來監控品質、預測診斷零組件壽命,乃至於售後維運服務所需的生產履歷。
其中隨著2010年製造業邁向工業4.0時代,終端客戶對於同步提升產品品質和生產良率的要求日益嚴苛,使得量檢測精度與頻率逐步增加。量檢測流程也從傳統為了確保品質,開始上溯到即時品質回饋;再結合AIoT技術即時提供量測數據,供製程設備修改參數,以符合最終產品的品質規範,甚至希望能達到不產出不良品,使得即時量測流程的重要性,幾乎已不亞於製程生產設備!
AI影像辨識更是實現智慧製造的關鍵技術,不僅帶來了巨大的商業潛力,更為傳統產業的轉型升級提供了強勁動力,克服傳統工廠使用人工目視去判斷製程的瑕疵檢測,往往須耗費大量人力與時間,長期反映在墊高整體的生產成本上。且就檢測品質而言,容易因為長時間觀看導致視覺疲勞、或是肉眼觀察的細緻度不足,造成誤判的風險,難以保持品質穩定。
...
...
使用者別 |
新聞閱讀限制 |
文章閱讀限制 |
出版品優惠 |
一般訪客 |
10則/每30天 |
5/則/每30天 |
付費下載 |
VIP會員 |
無限制 |
20則/每30天 |
付費下載 |