在多層介電質結構如低溫共燒陶瓷(LTCC, low temperature cofired ceramic) 中,電感、電容和傳輸線的設計有相當大的自由度。然而對螺旋型電感而言,由於受到尺寸和自共振頻率的限制,當感值大於幾個奈亨利(nano Henry)時則不容易製作,所以有論文[1-2]提出使用直線耦合電感來產生一個相當大的等效電感值的方法。圖一是耦合電感的電路圖。
在圖一(a)中,L1和L2是沒有任何耦合的自感值,M表示為兩個電感間的互感值,圖一(a)可等效成圖一(b),其中LL1、LL2、MM的轉換公式如下。
只要能將M調整的夠小,就可以的到很大的MM。實際使用時,可以使用如圖二的布局來實現,如圖二所示,編號為第三和第四層中的兩條直線耦合電感被設計來實現L1、L2和M。然而在LTCC製程中的多層堆疊結構中,上下層不對正是無法避免的,一般而言,大約會有20至50毫米的誤差,這將導致互感值產生變化。
一般直線耦合電感的Y-軸方向的尺寸約為幾百微米並且遠大於其在X-軸方向尺寸,因此X-軸方向的上下層不對正對於耦合電感有較大的影響。於是我們設計了一種對於X-軸方向的上下層不對正有較高容忍度之耦合電感。如果我們可以將直線耦合電感分成許多小段,且每一小段對於製程變異都有相反的效應,因製程變異而在每一小段所造成的影響將會彼此相消。結果我們就可以得到一組對於上下層不對正有較高容忍度的耦合電感。
圖三為一可實現上述方法的電路,圖中的耦合直線被分為二小段,實際使用時可以分成更多段,連接第一埠的金屬在上層,連接第二埠的金屬在下層。當上層介質向正X-軸方向偏移的時候,於第一段兩線間的距離將會減少,而於第二段兩線間的距離卻會增加。兩線間在第一段所減少的距離將會造成互感值M的增加及等效電感值MM的減少。第一段距離變小造成等效電感值MM的減少量將會與第二段距離變大造成等效電感值MM的增加量相互抵消。最後我們將可以在上下層不對正的情況下,得到一個較穩定的等效電感值MM。
由較高製程變異容忍度之元件實現傳輸零點的電路
為了驗證我們所提出的耦合電感確實能在系統中發揮他們的效果,我們將其用來實現傳輸零點之電路如圖四的電路示意圖。電路中的Ls、Lp1及Lp2由我們所提出的耦合電感來實現,Cs則由類似EP 1,341,195的電容實現,本文中所使用的電容均為此種結構。由第一埠至第二埠的穿透係數所發生之零點將由Cs與Ls的共振來決定。任何Cs與Ls值的改變將會明顯得表現在傳輸零點的位置變化。
圖五顯示了此電路的空間結構圖。圖五(a)我們使用所提出的耦合電感與電容來實現此電路設計,為了檢驗上下層不對正時對此路的影響,我們將上層金屬電路偏移正X-軸50微米及負X-軸50微米如圖五(b)、(c)所示。
圖五(d)顯示了由電容與直線耦合電感來實現傳輸零點之電路的空間結構圖。我們一樣將上層金屬電路偏移正X-軸50微米及負X-軸50微米如圖五(e)、(f)所示。
我們將比較使用所提出之耦合電感與直線耦合電感來實現電路的效能差異。圖六示由模擬而獲得的穿透係數。圖六顯示由電容與所提出耦合電感實現的傳輸零點電路與將其c正、負X-軸偏移50微米之穿透係數模擬結果。我們可以明顯地看出,在上下層不對正的情況下,傳輸零點的位置幾乎沒變,它只偏移了+2.8%至-1.4%之間。
(表一) 兩種電路之效能比較結果
表一提供了兩種電路之效能比較結果。我們所提出的耦合電感比傳統的直線耦合電感有較大的製程變異容忍度。
直線耦合電感 |
M(nH)
@4GHz |
MM(nH)
@4GHz |
Fzero
(GHz) |
提出的新電感 |
M(nH)
@3.5GHz |
MM(nH)
@3.5GHz |
Fzero
(GHz) |
上層
+x shift? 50μm
圖五(e) |
0.165 |
1.884 |
4.54?? +11.5% |
上層
+x shift? 50μm
圖五(b) |
0.113 |
2.136 |
3.63 ??+2.8% |
Nominal
圖五(d) |
0.14 |
2.407 |
4.07?? 0% |
Nominal
圖五(a) |
0.101 |
2.351 |
3.53?? 0% |
上層
-x shift? 50μm
圖五(f) |
0.119 |
2.945 |
3.72?? -8.6% |
上層
-x shift? 50μm
圖五(c) |
0.094 |
2.488 |
3.58?? -1.4% |
由較高製程變異容忍度之元件實現單頻帶帶通濾波器
經由傳輸零點電路的性能改善驗證了我們所提出的耦合電感確實有它的功用,我們將繼續用其來實現在2.4GHz的單頻帶帶通濾波器如圖七的電路示意圖。電路中的、Ls、Lp1及Lp2由我們提出的耦合電感來實現,而Ci1、Ci2、Cp1、Cp2及Cs則由金屬-介質-金屬的電容來實現。由第一埠至第二埠的穿透係數所發生之零點位置將由Cs與Ls的共振頻率來決定,而帶通頻率也由Lp1、Lp2、Cp1及Cp2來決定。耦合電感間的互感值有任何變化都會影響到Lp1及Lp2,特別是Ls。進而在傳輸零點的位置、帶通頻率和其穿透係數的大小產生明顯的變化。
圖八顯示了此電路的設計圖。L1及L2用到與圖一相同的概念來實現Lp1、Lp2及Ls。圖八(a)我們使用所提出的電容與所提出的耦合電感來實現此電路設計,為了研究上下層不對正時對此路的影響,我們亦將上層金屬電路偏移正X-軸50微米及負X-軸50微米來做相對應之比較。圖八(b)顯示了由所提出的電容與直線耦合電感來實現單頻帶帶通波器。我們一樣將上層金屬電路偏移正X-軸50微米及負X-軸50微米。我們將會比較用所提出之耦合電感與直線耦合電感來實現
圖九是由模擬而獲得的穿透係數。圖九(a)顯示由所提出電容與所提出耦合電感實現的單頻帶帶通濾波器並將其上層金屬電路正、負X-軸偏移50微米之穿透係數模擬結果。我們可以明顯地看出,在上下層不對正的情況下,傳輸零點的位置及中心頻率的穿透係數幾乎沒變,它們只偏移了+2.8%至-1.4%及0.089dB至0.138dB。
圖九(b)顯示由所提出電容與直線耦合電感實現的單頻帶帶通濾波器與將其上層金屬電路正、負X-軸偏移50微米之穿透係數模擬結果。由圖中可看出其傳輸零點的位置偏移了14.5%至-10.5%,而中心頻率的穿透係數則改變了4.058dB至負0.737dB之間。
表二提供了兩種電路之效能比較結果。此處再次驗證我們所提出的耦合電感比傳統的直線耦合電感有較大的製程變異容忍度。
(表二) 兩種電路之效能比較結果
Straight-
line
inductors |
Fzero
(GHz) |
S21(dB)
(@2.4GHz) |
proposed
inductors |
Fzero
(GHz) |
S21(dB)
(@2.4GHz) |
Top layer +x shift? 50μm
Fig. 6(e) |
2.175?? +14.5% |
-6.115
-4.058dB |
Top layer +x shift? 50μm
Fig. 6(b) |
1.95
2.6% |
-2.683 -0.138dB |
Nominal
Fig. 6(d) |
1.9??
0% |
-2.057
0dB |
Nominal
Fig. 6(a) |
1.9
0% |
-2.545??
0dB |
Top layer -x shift? 50μm
Fig. 6(f) |
1.7?? -10.5% |
-1.32
+0.737dB |
Top layer -x shift? 50μm
Fig. 6(c) |
1.875
-1.3% |
-2.634 -0.089dB |
傳輸零點電路之量測結果
圖十為傳輸零點電路於FR4材質之實作布局。圖十(a)為一組九個由提出之耦合電感與電容所實現的傳輸零點電路。圖十(b)為一組九個由直線耦合電感及電容所實現的傳輸零點電路。各組中第一個電路為未偏移之電路,為驗證上下層不對正時對電路特性的影響,第二個到第九個電路則向右、左、上、下、右上、右下、左上及左下偏移內層金屬層300微米,再量測其電路的穿透係數。
量測結果於圖十一所示,圖十一(a)為由提出之耦合電感及電容所實現的傳輸零點電路之穿透係數,其顯示了傳輸零點位置集中即具有較大防止上下層不對正的穩定度。圖十一(b)為由直線耦合電感及電容所實現的傳輸零點電路之穿透係數,其顯示了傳輸零點位置分散即電路特性易受上下層不對正而影響。上述驗證了我們所提出的耦合電感的確對於製程變異有較大的容忍度。
結論
本研究提出了擁有高製程變異容忍度之耦合電感。為了驗證我們所提出的耦合電感確實能在系統中發揮他們的效果,我們將其用來實現傳輸零點與單頻帶帶通濾波器之電路。由圖六及圖表一的兩種比較圖可看出,用我們所提出的耦合電感來設計傳輸零點之電路時,即使有上下層不對正50微米的情況發生,傳輸零點的位置也幾乎沒變,只有的+2.8%至-1.4%之間的變化。比起由傳統的耦合電感去實現電路時,傳輸零點位置劇烈變化從+11.5%至-8.6%的情況實在好了很多。
我們可由單頻帶帶通濾波器的實現得到相似的結果如圖九及表二。我們可以明顯地看出,在上下層不對正的情況下,由所提出的電容與所提出的耦合電感來實現單頻帶帶通濾波器時,其傳輸零點的位置及中心頻率的穿透係數幾乎沒變,它們只偏移了+2.8%至-1.4%及0.089dB至0.138dB。然而由直線耦合電感來實現此電路時,其傳輸零點的位置卻偏移了+14.5%至-10.5%,而中心頻率的傳輸係數則改變了+4.058dB至-0.737dB。
電路實作量測結果於圖十一所示,圖十一(a)為由提出之耦合電感所實現的傳輸零點電路之傳輸係數,其顯示了傳輸零點位置集中即具有較大防止上下層不對正的穩定度。圖十一(b)為由提出之電容及直線耦合電感所實現的傳輸零點電路之傳輸係數,其顯示了傳輸零點位置分散即電路特性易受上下層不對正而影響。上述驗證了我們所提出的耦合電感的確對於製程變異有很大的容忍度。
綜合上述結論,所提出的耦合電感確實比直線耦合電感擁有較大的製程變異容忍度,且使產品大量生產時可獲得較大的穩定度,進而改進良率降低成本。
此種電路可以實現於任何的多層介電質結構中,如LTCC (low temperature cofired ceramics)低溫共燒陶瓷、多層的FR4基板、IC晶片內或是多層的軟性電路板中。特別是軟性電路板,即使製程本身沒有偏差,由於電路板的彎曲一樣會造成上下電路之間相對位置的改變,而造成電感值的變化。本結構一樣可以提供較穩定的電感值。
---作者盧信嘉為國立台灣大學電機工程博士,現任台灣大學電子工程研究所助理教授;趙子威為國立台灣大學電子工程碩士;周晏田為國立台灣大學電子工程碩士,現為台灣大學電子工程研究所博士班學生---
參考文獻:
[1] Albert Sutono, Joy Laskar and W. R. Smith, “Design of miniature multilayer on-package integrated image-reject filters,” IEEE Trans. Microwave Theory and Tech., vol. MTT-51 Part 1, pp. 156~162. Jan. 2003.
[2] Lap Kun Yeung and Ke-Li Wu, “A Compact second-order LTCC bandpass filter with two finite transmission zeros,” IEEE Trans. Microwave Theory and Tech., vol. MTT-51 No. 2, pp. 337~341, Feb. 2003.