事實上,輸入LED的電力只有不到20%轉化為光能,其餘的80%則變為熱力。這實在是照明系統設計人員需要克服的問題。假如照明系統實施欠佳,即使最完善的散熱設計也無法發揮真正效用。保持安全的LED操作環境、減少熱對LED壽命造成影響,便落在用於LED驅動IC之上。
審定規格
只要看看高亮度LED製造商提供的元件產品規格,便不難確定需要留意的主要設計參數,並且可以得知在高溫下操作這些元件的負面影響。LED的實際壽命與功率消耗和LED的溫度成反比。製造商可顯示在Tj 80℃溫度下運行約一億小時的平均故障間隔時間 (MTBF)。在實用的系統中,LED的故障不一定會造成大問題,但在散熱不足而Tj又升至120℃或以上的系統中,LED的壽命將大幅縮短。在極端的情況下,LED更會即時出現故障。散熱設計可導入超補償功能,以抗衡最惡劣的實施環境。但在某些情況下,這是不可能的事情。以筒燈為例,一般安裝在絕緣的天花板夾層空間。這層空間不僅妨礙散熱,還沒有足夠位置安裝額外的散熱設施。
相對亮度也與結點溫度成反比。隨著數據資料的變異,製造商估計在最大結點溫度下的光輸出會減弱30%。同樣,流明維護效果與結點溫度也成反比。在70℃結點溫度下,一個LED操作超過五萬小時後,一般會損耗30%的光度輸出;溫度更高時損耗會更大。
實際上,無論原因何在,光輸出隨時間減弱不一定會構成大問題。 用戶甚至未必察覺到減弱現象,因為LED的性能表現根本就可以媲美其他照明設備。
結點溫度的控制
綜合上述因素,考慮周詳的設計人員最重要的目標,就是LED的散熱,把結點溫度保持在最大額定值以下,避免過早出現故障。用來產生所需LED電流的電子元件,可以導入偵測溫度過高的方法,有效減低LED的驅動電流,保持穩定的操作溫度。雖然光線輸出會略為減弱,但LED的「生命力」卻十分旺盛,可以長期運作。
以(圖一)的電路為例,當中的降壓轉換器配備溫度控制功能。該電路設計專門用來驅動LED,驅動電流高至1安培,供應電壓介乎4至6伏特。
降壓轉換器操作
在Q1開關起動後,電流便會流過LED和L1,並且提升至一個特定水平,使通過Rsense 的電壓達到U1的臨限。ZXSC300控制器接著會把驅動移除至Q1, 然後斷路。儲存在L1內的能量會產生放電,流過D1和LED。ZXSC300的固定斷路週期為1.7?s,然後Q1會再起動,整個週期又會再重複。這個應用的交換頻率約為150kHz。
加入熱能控制
電路利用一個150k? NTC熱控管進行溫度偵測,該元件所設位置與LED保持高壓熱能接觸。流過熱控管的電流會倍增,再與峰值交換電流相加,加以調節LED電流。
隨著溫度增加,熱控管的電阻會減少,讓更大電流流過,以提高Isense 電壓,使控制器在更低的LED電流下關掉。熱控管的Rgain 和Rsense 值經過設定,使LED的操作溫度保持在安全操作的界限。如控制圖像所顯示,供應電壓的變異只會對溫度控制帶來很小的影響。
圖一的電路所採用的元件,是利用以下的簡單方程式計算出來的。
這個電路利用一個Yuden 150k?熱控管作為溫度感應器。目標控制溫度為 75℃,輸出電流為833mA。Rgain為10?,Rsense為20m?,Vsense為20mV。(表一)顯示了熱控管的溫度特性,以及6V電源對峰值電流的影響。有關結果在(圖二)顯示,主要針對4至6伏範圍內的不同電壓值。
這個例子說明了驅動833mA LED電流所需的元件。電路可以輕易適配,透過改變Rsense值驅動更低電流。只需改變Rgain值,便可選擇不同的溫度斷點。
表一 熱控管的溫度特性及對峰值電流的影響
Tem p ℃ |
R NTC kOhm |
Ipeak A |
Change % |
-25 |
2800 |
1.00 |
20 |
0 |
600 |
1.00 |
19 |
25 |
160 |
0.98 |
18 |
50 |
50 |
0.94 |
13 |
75 |
18 |
0.83 |
0 |
100 |
7 |
0.57 |
-31 |
125 |
1.6 |
0.00 |
-100 |
《圖二 在4至6伏電壓範圍內熱控管特性對峰值電流的影響》 |
|
總結
只需要加入簡單的電子元件,就可以保護貴重的高亮度LED。這種技巧可以在很多不同的控制系統上應用,同時適用於採用任何ZXSC系列LED驅動器IC的降壓和升壓操作模式。這種熱保護設計有助照明系統的設計人員實現更小巧、生產成本更低的解決方案。在某些情況下,甚至可以採用在沒有熱保護的環境下無法使用的面積。