本文叙述如何使用深度学习来进行地下电缆系统的预测性维护。利用深度学习模型能够接近即时地执行分类,让现场的技术人员可以在撷取到资料後立即看到结果,并且在必要时重新执行测试。
地下电缆系统与陆上电线路网相比,虽然对暴风雨、闪电、野火、冰暴、以及其他不利天气状况较不敏感;不过,地下电缆维修成本较高,很难准确指出故障位置及进行修复。如果电缆的瑕疵未被侦测出来,可能导致停电和对大众造成危险。
根据IEEE数据显示,大约90%的地下电缆系统故障都和局部放电(partial discharge;PD)有关,也就是电缆内的电场超出介电质绝缘体可承受的能力时出现的现象。当PD发生时,会产生高频讯号?幅度通常低於100毫伏(millivolts),由於这些讯号是介电质劣化,并且最终将导致故障的象徵,因此最好能及早检测到这些无法预料的电缆故障讯号,并在故障发生之前进行维修。
...
...
另一名雇主 |
限られたニュース |
文章閱讀限制 |
出版品優惠 |
一般使用者 |
10/ごとに 30 日間 |
0/ごとに 30 日間 |
付费下载 |
VIP会员 |
无限制 |
25/ごとに 30 日間 |
付费下载 |