隨著網際網路的出現,人們不斷發現新的應用方法,例如資料傳輸、視訊會議等。這些應用都需要更快的傳輸速度,因此光纖通訊以其超快的頻寬與極低的傳輸損耗,一直是滿足這些需求的終極解決方案。光通訊的原理是利用光纖(fiber)來傳遞光訊號,如(表一)所示是光通訊和其它不同的通訊方法比較表。由表中可明顯看出,光通訊的頻寬可達百億位元(10Gbs),遠大於其餘各種通訊方法,而且其損耗也很低,每公里只有0.2dB。事實上,由於光纖本身的頻寬可達500億赫茲(50GHz)以上,因此光通訊的頻寬是被電子零件的頻寬所限制住,但是隨著近年來製程進步與電晶體速度的提升,光通訊電路也變得越來越重要。現在市面上的寬頻上網大部份都是利用ADSL(Asymmetric Digital Subscriber Line),它的好處是只要用現有的電話線路即可,但是它的損耗相當大,因此頻寬沒辦法作到很高,尤其是對於像視訊會議這種須要雙向都很快的應用是沒有辦法的。是故,未來光纖到家(fiber to the home;FTTH)會成為必然的趨勢,台灣地小人稠,正好適合這種光纖到家的終極解決方案,光通訊電路勢必會成為下一代網路通訊的骨幹。另外,由於光通訊電路接收端是整個光通訊電路當中最困難的部份,因此本文將針對光通訊電路接收端進行深入的探討,並針對矽鍺技術的應用作詳細說明與分析。
光通訊電路接收端架構簡介
光通訊電路接收端架構如(圖一)所示,光信號經由光纖傳送,先到達光偵測器(Photodetector;PD),將光信號轉換為光電流。接下來再由轉阻放大器(Transimpedance Amplifier;TIA)將光電流轉換為電壓信號,再經限制放大器(Limiting Amplifier;LA)將電壓信號放大到可以當作數位信號的程度。接下來再將此信號送給數據時脈回復電路(Clock and Data Recovery;CDR),判斷資料為0或1,並順便以資料的速度產生一固定時脈的方波信號,讓後級的數位電路可以使用這個轉換出來的信號。 ... ...